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a b s t r a c t 

ICD-9 codes have been widely used to describe a patient’s diagnosis. Accurate automatic ICD-9 coding 

is important because manual coding is expensive, time-consuming. Inspired by the recent successes of 

deep transfer learning, in this study, we propose a deep transfer learning framework for automatic ICD-9 

coding. Our proposed method makes use of transferring MeSH domain knowledge to improve automatic 

ICD-9 coding. We demonstrate its effectiveness by achieving state-of-the-art performance with a value of 

0.420 for Micro-average F -measure on MIMIC-III dataset, which indicates that our method outperforms 

hierarchy-based SVM and flat-SVM. Furthermore, we analyze the deep neural network structure to dis- 

cover the vital elements in the success of our proposed method. Our experimental results indicate that 

transfer learning is the key component to improve the performance of automatic ICD-9 coding and deep 

learning approach is the foundation in the success of our proposed model. In addition, to explore the best 

network architecture, we also compare the performance of multi-scale and sequential network architec- 

tures and find that using multi-scale network is better. Finally, we investigate the effects of transferring 

different percentage of samples on transfer learning and the results show that the best performance of 

target domain task can be obtained when 100% number samples are transferred. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The Ninth Revision of International Classification of Diseases

ICD-9) codes have been widely used to describe a patient’s diag-

osis including symptoms, statistical analysis of mortality rate and

edical reimbursement [1] . ICD-9 codes mean that each disease

as a unique code and are used in the electronic health records as

 billing mechanism. In most cases, ICD-9 codes are undertaken by

oders of the hospital’s Medical Record Department, who assign

n ICD-9 code to medical record according to a doctor’s clinical

iagnosis record [2] . To fulfill the task, the coders have to mas-

er knowledge in the field of medicine, coding rules and medi-

al terminologies and thus manual coding is expensive and time-

onsuming. Taking into consideration of these constraints, there is

n urgent need to develop an accurate and effective computational

ethod for automatic ICD-9 coding. 

Over the past two decades many scientists have explored how

o automatically assign ICD-9 codes based on clinical records. From

 computational perspective, automatic ICD-9 coding can be con-

idered as a multi-label classification problem, where each ICD-9

ode is a class label and each patient has multiple ICD-9 codes.
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o address this multi-label classification problem, researchers

pplied machine learning methods such as support vector machine

SVM) [3–6] , Naive Bayes [7,8] , k-nearest neighbors [9,10] , topic

odel [11,12] , and so on [13–15] to automatically assign ICD-9

odes. Adler et al. [6] presented novel evaluation metrics, which

elp them get a better sense of the usefulness of the hierarchical

pproach. SVM classifier was used in their experiment for classi-

cation. Chen et al. [13] proposed a semantic analytic technique

ased on dependency parsing to automatically assign clinical ICD-

 codes to complex medical patient records. They evaluated their

echnique with a real-world corpus and the results showed that

heir technique is indeed effective in relating strong similar docu-

ent pairs. Pereira et al. [15] presented three different approaches

search engine, boosting algorithm and rule-based model) to pre-

ict the ICD-9 codes of radiology reports. Their experimental re-

ults showed that semantic information plays a key role in deter-

ining ICD-9 codes. 

Although many machine learning methods have been developed

or automatic ICD-9 coding, there is a room to improve the classifi-

ation accuracy. To further improve machine learning methods for

utomatic ICD-9 coding, we borrow ideas from very recent break-

hrough in transfer learning [16] . Transfer learning can learn from

ne related task and apply that knowledge to a target task. It has

een proved a very effective method for classification and thus

as been widely applied in bioinformatics field [17–19] . In this
coding via deep transfer learning, Neurocomputing (2018), 
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Fig. 1. The distribution of top 200 ICD-9 codes with highest frequency in MIMIC-III 

dataset. 
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study we would like to utilize transfer learning for improving the

performance of automatic ICD-9 coding because low level features

learned from a related task should be helpful for learning target

task. 

We choose automatic MeSH indexing as an extra auxiliary task

to help improve the performance of automatic ICD-9 coding. MeSH

is a big medical literature data source which has tens of millions

of samples [20,21] . From a computational perspective, these two

tasks (MeSH Indexing and ICD-9 coding) have similar inputs (the

medical text). Automatic MeSH indexing also can be viewed as

a multi-label classification problem. The main difference is that

MeSH dataset has a much larger sample size than ICD-9 codes

dataset. Because of MeSH has such characteristics, we want to take

knowledge learned from automatic MeSH indexing and transfer it

to automatic ICD-9 coding. Having learned to automatic MeSH in-

dexing, it might have learned some useful knowledge about word,

phrase, sentence, that knowledge could help automatic ICD-9 cod-

ing network learn well with less data. 

This paper proposes an end-to-end deep transfer learning

method to transfer knowledge learned from MeSH source do-

main into ICD-9 codes domain. We first pre-train our deep learn-

ing model using a large number of MeSH dataset and then fine

tune this neural network architecture on ICD-9 code dataset. Our

experimental results show that our method greatly outperforms

the state-of-the-art methods. Furthermore, we investigate the vi-

tal elements in the success of our proposed deep transfer learn-

ing method. The results demonstrate that transfer learning is the

key elements to improve the performance of automatic ICD-9 cod-

ing model. In addition, to explore the best network architecture,

we evaluated the performance of multi-scale and sequential net-

work architectures and the results suggest that using multi-scale

network has resulted in higher Micro-average F-measure. Finally,

we investigate the effects of transferring different percentage of

samples on transfer learning and the results show that the best

performance of target domain task can be obtained when 100% of

samples are transferred. 

2. Materials 

We make use of transfer learning to help improve accuracy

and performance of automatic ICD-9 coding. In this study, we

choose Multi-parameter Intelligent Monitoring in Intensive Care-III

(MIMIC-III) dataset as ICD-9 code dataset and BioASQ3 dataset as

MeSH dataset [22] . In the following, we briefly introduce these two

datasets. 

2.1. MIMIC-III dataset 

Multi-parameter Intelligent Monitoring in Intensive Care

(MIMIC) is a large, publicly available database, which has been

developed by the MIT Lab. It is the most widely-used dataset

for healthcare academic and industrial research. MIMIC-III is the

third version of the MIMIC Intensive Care Unit (ICU) database and

contains data associated with 58,929 distinct hospital admissions

for adult patients between 2001 and 2012. Data includes discharge

summaries, medications, laboratory measurements, procedure

codes, diagnostic codes, survival data etc. In this work, we use

only discharge summaries to study automatic ICD-9 coding. 

Using MIMIC-III dataset for automatic ICD-9 coding has several

difficulties. First, the distribution of ICD-9 code is highly biased.

In Fig. 1 we show the distribution of top 200 codes with high-

est frequency. The number of all code categories is 6984, and the

number of discharge summaries of 105 codes with the highest fre-

quency makes up 50% of the entire samples. The bias of the distri-

bution can be understood more quantitatively from Table 1 , which

shows four ICD-9 codes, ranked as first, 10th, 10 0th and 1,0 0 0th in
Please cite this article as: M. Zeng et al., Automatic ICD-9 
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erms of their frequencies in all 58,929 medical records from our

ataset. The most frequent ICD-9 code, 401.9 (hypertension), ap-

ears in 35.1% medical records, while the 1,0 0 0th frequent ICD-9

ode, 999.8 (other and unspecified transfusion reaction not else-

here classified), appears in 0.14% medical records only. The bias

f distribution usually leads to a poor performance of classification.

econd, there is a large variation in the number of ICD-9 codes

or each patient. For example, one patient may have 39 associ-

ted codes, while another may have only one code. Thirdly, aver-

ge number of discharge summaries of a code is small. MIMIC-III

as 6,984 ICD-9 codes and 58,929 discharge summaries. Average

umber of discharge summaries of a code is only about 8.43. Such

 small average number means that many codes lack of enough

amples for training, which leads to a difficulty of classification. Fi-

ally, there is a large variation in the length of discharge summary.

he length of the longest discharge summary has 4314 words and

he shortest one has only a few words. 

The characteristics of the MIMIC-III dataset discussed above

ive rise to difficulties of automatic ICD-9 coding. To tackle these

ifficulties, we employ transfer learning to improve the perfor-

ance of automatic ICD-9 coding. 

.2. BioASQ3 dataset 

MeSH is the largest medical literature database and is devel-

ped by National Library of Medicine. MeSH has been widely

sed in many natural language processing task such as document

earching, document clustering and query expansion. Thus accu-

ate MeSH indexing of medical documents is very important for

ining knowledge from this database. MeSH indexing is mostly

ndertaken by high-quality staff, which is expensive and time-

onsuming. In view of these limitations, developing an effective

utomatic MeSH indexing algorithm is very urgently needed. Auto-

atic MeSH indexing also can be viewed as a multi-label classifi-

ation problem, where each MeSH is a class label and each sample

as some MeSHs. 

We download MeSH data from Large Scale Biomedical Seman-

ic Indexing Competition (BioASQ3) challenge. 12,208,342 indexed

itations with both abstracts and titles are locally stored. There are

7,301 MeSH main headings (MHs) with average samples of a la-

el being 477.12. Thus the total number of samples, total number

f labels, and average samples of a label in MeSH dataset are much

arger than those of MIMIC-III dataset. The larger number of sam-

les in MeSH dataset gives a great advantage to transfer learning,
coding via deep transfer learning, Neurocomputing (2018), 
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Table 1 

The first, 10th, 100th and 10 0 0th ICD-9 codes in terms of the frequencies of appearances in 58,929 medical records from MIMIC-III dataset. 

ICD-9 Code Correspond name Frequency rank Frequency of patients with code 

401.9 Hypertension 1 0.3513 

530.81 Esophageal reflux 10 0.1073 

V10.46 Personal history of malignant neoplasm of prostate 100 0.0205 

999.8 Other and unspecified transfusion reaction not elsewhere classified 10 0 0 0.0014 

Table 2 

Basic statistics of the two datasets (BioASQ3 and MIMIC-III) used in our experiment. 

Dataset Task Total number of samples Total number of labels Average samples of a label 

BioASQ3 Multi-label classification 12,208,342 27,301 447.12 

MIMIC-III Multi-label classification 58,929 6984 8.43 

Fig. 2. Overview of our proposed model for automatic ICD-9 coding. 
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.e. we have enough data to learn low level features. Detailed com-

arison between two datasets is summarized in Table 2 . 

. Methods 

In this section, we first introduce the overview of our proposed

eep transfer learning framework in Section 3.1 and then give the

etails of convolutional neural network, transfer learning, evalua-

ion metrics and baseline models in Sections 3.2 , 3.3 , 3.4 and 3.5 ,

espectively. 

.1. Overview of deep transfer learning framework 

As shown in Fig. 2 , our deep learning framework consists of

wo parts. The first part is to train a neural network for auto-

atic MeSH indexing using BioASQ3 dataset. The second one is to

x the shared network architecture parameters and then to retrain

he weights of the output layer for automatic ICD-9 coding using

IMIC-III dataset. The shared network architecture is composed of

ulti-scale convolutional neural network (CNN) and batch normal-

zation. Multi-scale CNNs are used to detect patterns and extract

ifferent scale features for input medical text. Batch normalization

fter multi-scale CNN layers is used to control the distributions of

he output vector, which reduce internal covariate shift. After the

hared network architecture, a fully connected layer with sigmoid

ctivation function to predict the probability of label is utilized to

lassify the medical text. In the first part, we utilize all samples

n MeSH dataset to train the shared network architecture parame-

ers to learn high quality low level shared features. In the second

art, the MIMIC-III dataset is divided into two parts of training set
Please cite this article as: M. Zeng et al., Automatic ICD-9 
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nd testing set. We used shared features in the earlier layers in

eural network to retrain the parameters of output layer by us-

ng the training set and then we used the testing set to evaluate

he performance of our proposed model. The whole process can be

onsidered as another kind of fine-tune operation using a source

omain task architecture. The purpose is to use the shared fea-

ures learned on automatic MeSH indexing to fine tune parameters

n smaller target dataset during training and improve the perfor-

ance of automatic ICD-9 coding. 

.2. Transfer learning 

A common assumption in many machine learning methods is

hat the training and testing data are drawn from the same fea-

ure space with the same distribution [16] . However, in many real-

orld applications, it is difficult to collect sufficient training data

o train an effective machine learning model. For example, we are

ometimes interested in one domain which does not have suffi-

ient training data. Nevertheless, we have sufficient training data

n another relative domain. In such a case, transfer learning can

earn from another task in relative domain and then apply that

nowledge to target task in domain of interests, which can improve

he performance of target task. Relative domain is called source

omain and domain of interests is called target domain. In this

tudy, we investigate automatic ICD-9 coding domain and we hope

o transfer knowledge learned from automatic MeSH indexing do-

ain to improve performance of target task. We formally defined

arget domain task and source domain task as follows: 

Target domain task: automatic ICD-9 coding by using MIMIC-III

dataset; 

Source domain task: automatic MeSH indexing by using BioASQ3

dataset; 

Source domain task as the auxiliary task can help improve our

ain task (target domain task). 

.3. Multi-scale CNN 

CNN is a class of deep, feed-forward artificial neural network

hich has successfully been applied to various machine learning

asks [23–27] . Recently, CNNs have been employed for natural lan-

uage processing (NLP) task such as semantic parsing, sentence

odeling, sentence classification, search query retrieval and so on.

NNs utilize layers with kernel filters that are applied to extract

ocal features. It means that CNN layers can automatically learn

ow-level features from input data. Based on the ability of CNNs,

e do not need to handle engineered features. 

Multi-scale learning has been proved to be an efficient method

o combine different features for classification [28,29] . It is used to

btain multiple local contextual feature maps. As in most convolu-

ional models, we used CNNs to extract features from medical free
coding via deep transfer learning, Neurocomputing (2018), 
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Fig. 3. Model architectures: (a) strong baseline deep learning model without trans- 

fer learning (b) sequential CNNs network architecture in shared layer. 
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text. In order to extract better low-level features, we used multi-

scale CNN layers with different kernel sizes (see Fig. 2 ). With the

extracted multi-scale low-level features, we concatenate them into

a vector as local context feature. Batch normalization after multi-

scale CNN layers is used to control the distributions of the con-

catenated vectors, which reduce internal covariate shift. 

3.4. Evaluation metrics 

We denote M as the number of all ICD-9 codes, and N as the

number of samples. Let y i and 

̂ y i ∈ { 0 , 1 } M be the true and pre-

dicted label for sample i. Micro-average F-measure (MiF) is used to

evaluate the performance of our proposed model [30,31] . Micro-

average F-measure is the harmonic mean of Micro-average Preci-

sion (MiP) and Micro-average Recall (MiR). 

MiF = 

2 · MiP · MiR 

MiP + MiR 

(1)

where 

MiP = 

∑ M 

m =1 

∑ N 
i =1 y 

M 

i 
· ˆ y M 

i ∑ M 

m =1 

∑ N 
i =1 ˆ y M 

i 

(2)

MiR = 

∑ M 

m =1 

∑ N 
i =1 y 

M 

i 
· ˆ y M 

i ∑ M 

m =1 

∑ N 
i =1 y 

M 

i 

(3)

3.5. Baselines to compare 

Adler et al. [6] demonstrated that flat hierarchy-based SVM ob-

tained the state-of-the-art performance for automatic ICD-9 coding

on MIMIC-II dataset. In their experiment, they used flat SVM as a

baseline machine learning model. Thus it is worth to have a com-

parison with the results of flat SVM and hierarchy-based SVM. To

the best of our knowledge, there is no previous work formally re-

ported deep transfer learning framework for automatic ICD-9 cod-

ing. In addition to the non-deep learning methods of flat SVM

and hierarchy-based SVM, we further developed a strong baseline

deep learning model without transfer learning to compare with

our deep transfer learning method to explore the validity of trans-

fer learning of our proposed method (see Fig. 3 (a)). Furthermore,

in order to explore the best network architecture in shared layer,

we also compare multi-scale CNNs with sequential network archi-

tecture (see Fig. 3 (b)). 

4. Results 

In this section, we first introduce the experimental implementa-

tion details in Section 4.1 . After that we compare the performance

of the proposed approach with state-of-the-art and other base-line

model in Section 4.2 , and then analyze the architecture of the pro-

posed method in Section 4.3 . Furthermore, we compare different

network structure as shared layer in Section 4.4 . Finally we explore

the effects of transferring different percentage of number of sam-

ples on transfer learning. 

4.1. Implementation details 

In this study, the discharge summaries of patients as the train-

ing dataset are used for training our model. After removing the

discharge summaries with the number of words less than ten,

we extracted 52,962 samples with their discharge summaries from

MIMIC-III, and the total number of ICD-9 code is 6984. We ran-

domly split the total discharge summaries into training set which

consists of 47,665 documents and testing set which has 5297 doc-

uments. We use all MeSH data for training parameters of shared

network structure. Our code is implemented in Tensorflow, a pub-

licly available deep learning framework developed by Google [32] . 
Please cite this article as: M. Zeng et al., Automatic ICD-9 
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To obtain the best performance of our proposed method, we

ave tried a set of different parameters of network architectures

o find best parameters for automatic ICD-9 coding. The detailed

etwork structure is as follows. The word embedding size of each

ord in input medical free text is 100 and CNN layer has 700 hid-

en units. Each multi-scale layer contains 64 convolutional kernels

f size 2, 3, and 4. Rectified Linear Units (ReLu) activation function

s used in multi-scale layer. We use a dropout rate of 0.8 on each

ayer in the network to avoid overfitting. Then we apply batch nor-

alization to reduce internal covariate shift with the batch size

eing set to 128. Sigmoid activation function is applied to fully

onnected layer to classification. We train all parameters in our

eep network using the Adam optimizer [33] . The loss function we

sed in our experiments is cross-entropy loss function, which was

idely used in classification tasks in deep learning field. 

.2. Comparison with results of baseline models 

To evaluate the performance of our proposed method, we

ave compared our experimental results with those of the follow-

ng baseline models: flat SVM and the state-of-the-art hierarchy-

ased SVM [6] . We used all BioASQ3 samples for training pa-

ameters in shared layer and computed three evaluation metrics

or comparison, which are Micro-average F-measure, Micro-average
coding via deep transfer learning, Neurocomputing (2018), 
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Fig. 4. The performances (Micro-average F -measure, Micro-average Precision and 

Micro-average Recall) of our proposed method and the compared baseline methods. 
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Fig. 5. The performances (Micro-average F -measure, Micro-average Precision and 

Micro-average Recall) of our proposed transfer learning method and the strong 

baseline deep learning model without transfer learning. 
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recision and Micro-average Recall. Fig. 4 shows the performances

f our proposed method and the other baseline models on MIMIC-

II dataset. It is obvious that Micro-average F-measure predicted

y our method significantly outperforms flat-SVM and hierarchy-

ased SVM. Our model obtained the values of Micro-average F-

easure, Micro-average Precision and Micro-average Recall being

.420, 0.483 and 0.371, respectively, which are better than flat-

VM (0.253, 0.635 and 0.158, respectively) and hierarchy-based

VM (0.335, 0.415 and 0.280, respectively). Although our value of

.483 on Micro-average Precision is smaller than that of flat-SVM

0.635), the most important evaluation metrics is Micro-average

-measure, which reflects the whole classification performance of

he classifier. Even though Micro-average Precision of flat-SVM is

igher than that of our proposed method, our proposed method

s a better classifier. Experimental results showed that deep trans-

er learning model is powerful and outperforms the traditional ma-

hine learning methods. 

.3. Comparing the performance of deep learning method without 

ransfer learning 

The previous experimental comparison used only traditional

achine learning methods. In order to explore whether the utiliza-

ion of transfer learning and deep learning improved the perfor-

ances of automatic ICD-9 coding, we conduct a study by remov-

ng transfer learning component in our network. Specifically, we

eveloped a strong baseline deep learning model without trans-

er learning to compare with our deep transfer learning method.

ompared with the network architecture of our proposed model,

he baseline deep learning model just removes transfer learn-

ng component. In the comparison, we used all BioASQ3 sam-

les for training parameters in shared layer. Fig. 5 shows the per-

ormances (Micro-average F -measure, Micro-average Precision and

icro-average Recall) of deep transfer learning method and that

f the strong baseline deep learning model without transfer learn-

ng. Two definite conclusions can be drawn from Fig. 5 . First, deep

ransfer learning model achieves the state-of-the-art results, which

ndicates that transfer learning is the key component in improv-

ng the performance of automatic ICD-9 coding. Without trans-

er learning component, Micro-average F -measure, Micro-average

recision and Micro-average Recall drop from 0.415, 0.480 and

.365 (deep transfer learning model) to 0.394, 0.440 and 0.356

baseline deep learning model), respectively. Second, deep learn-

ng approach is the foundation in the success of our proposed
Please cite this article as: M. Zeng et al., Automatic ICD-9 

https://doi.org/10.1016/j.neucom.2018.04.081 
odel. The strong baseline deep learning model without trans-

er learning outperforms the non-deep learning baseline model.

ithout deep learning approach, Micro-average F-measure, Micro-

verage Precision and Micro-average Recall drop from 0.394, 0.440

nd 0.356 (baseline deep learning model) to 0.330, 0.414 and 0.280

hierarchy-based SVM), respectively. In summary, transfer learning

nd deep learning components of our model really improves the

erformances of automatic ICD-9 coding. 

.4. Comparing the performance of multi-scale and sequential 

etwork structure 

Previous experimental results have shown that trans-

er learning and deep learning indeed improved the per-

ormances of automatic ICD-9 coding. In order to ex-

lore the best network architecture in shared layer, we

ave also compared the performance of multi-scale and

equential CNNS network architectures. Multi-scale and se-

uential CNNS network architectures have been widely applied to

xtracting image local features and proven to be effective for a

ot of image processing tasks. Inspired by their success in image

rocessing, we compare the performances of the different network

rchitectures in text multi-label classification. In this comparison,

e used all BioASQ3 samples for training parameters in shared

ayers. Fig. 6 shows the performances (Micro-average F -measure,

icro-average Precision and Micro-average Recall) of multi-scale

NNs network structure and that of sequential network structure.

rom Fig. 6 , we can observe that multi-scale CNNs structure

erforms better than sequential network structure. Micro-average

-measure, Micro-average Precision and Micro-average Recall of

ulti-scale CNNs structure are 0.420, 0.483, and 0.371, respec-

ively. These evaluation metrics of sequential network structure are

.389, 0.433, and 0.354, respectively. Micro-average F-measure of

ulti-scale CNNs structure is 8.0% higher than that of sequential

etwork structure. Micro-average Precision of multi-scale CNNs

tructure is 11.5% higher than that of sequential network structure.

icro-average Recall of multi-scale CNNs structure is 4.8% higher

han that of sequential network structure, which indicated that

he main improvement is Micro-average Precision. The experi-

ental results showed that multi-scale CNNs structure is better

han sequential CNNs structure in text multi-label classification.

herefore, multi-scale CNNs structure may provide more scales

nd more abundant context features of words that could be used
coding via deep transfer learning, Neurocomputing (2018), 
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Fig. 6. Performances (Micro-average F -measure, Micro-average Precision and Micro- 

average Recall) of multi-scale CNNs network and sequential network architecture. 

Fig. 7. Performances (Micro-average F -measure, Micro-average Precision and Micro- 

average Recall) of transferring 1%, 10%, 50%, 75% and 100% of samples of BioASQ3 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Training time of transferring 1%, 10%, 50%, 75% and 100% of samples of 

BioASQ3 dataset. 

Different percentage of samples used for training (%) Training time 

1 About 17 min 

10 About 2.5 h 

50 About 12 h 

75 About 18 h 

100 About 24 h 
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for automatics ICD-9 prediction. To some extent, it is similar to the

mixture of language N-grams model, thus it can obtain a better

performance. 

4.5. Effects of different percentage of transferred number of samples 

on transfer learning 

Section 4.3 has shown that transfer learning indeed improves

the performance of automatic ICD-9 coding. BioASQ3 dataset is

a big medical literature dataset and it has more than ten mil-

lion samples. In previous experiments, we used all BioASQ3 sam-

ples for training parameters in shared layer. Training with such

large number of samples takes a lot of time. In order to ex-

plore whether utilization of a small amount of samples of BioASQ3

dataset can achieves a good performance, we randomly selected

different percentage of samples (1%, 10%, 50%, 75%, 100%) and used

for transferring. Fig. 7 shows our experimental results of the per-

formances (Micro-average F -measure, Micro-average Precision and

Micro-average Recall) of automatic ICD-9 coding by transferring 1%,

10%, 50%, 75% and 100% of samples of BioASQ3 dataset. From Fig. 7 ,

we can see the best performance achieves when transferring 100%

samples of BioASQ3 dataset. At the percentage of 100%, Micro-
Please cite this article as: M. Zeng et al., Automatic ICD-9 
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verage F -measure, Micro-average Precision and Micro-average Re-

all are 0.420, 0.483 and 0.371, respectively, which are better than

hose of 75% (0.410, 0.470 and 0.363, respectively), those of 50%

0.410, 0.470 and 0.363, respectively), those of 10% (0.395, 0.448

nd 0.353,respectively) and of 1% (0.390, 0.435 and 0.355, re-

pectively). Obviously when transferring 100% samples, our model

earned high quality low level shared features such as word-level

eature, sentence-level feature, which is helpful to automatic ICD-9

oding. At the percentage of 75%, the evaluation metrics are a little

maller than that of transferring 100% samples of BioASQ3 dataset.

t the percentage of 50%, Micro-average F -measure is higher than

hat of using only the strong baseline deep learning model without

ransfer learning (0.410 versus 0.395), it showed that our proposed

odel have learned some knowledge that help for classification.

hen transferring 10% of the dataset, we have noticed that Micro-

verage F -measure is equivalent to that of using the strong baseline

eep learning model without transfer learning. This means that

0% of the dataset is not enough to learn something useful fea-

ures to help improve automatic ICD-9 coding. At the percentage

f 1%, Micro-average F -measure is worse than that of using only

he strong baseline deep learning model without transfer learning

0.390 versus 0.394). This shows that only transferring 1% of the

ata even decreases the performances of our target domain task.

hese experimental results suggest that the best performance of

utomaticICD-9 coding can be obtained at the percentage of 100%. 

The entire deep network is trained on a single NVIDIA TITAN

 GPU with 12 GB memory. In Table 3 we give the training time

f transferring 1%, 10%, 50%, 75% and 100% of samples of BioASQ3

ataset. It takes about 24 h to train our deep network with the

riginal dataset. The training time of transferring 1%, 10%, 50%, 75%

s about 17 min, 2.5 h, 12 h, and 18 h, respectively. From the results

resented in Table 3 , we find that the training time increases sig-

ificantly with the increase of training samples. The training time

s roughly a linear relationship with the number of training sam-

les. 

. Conclusion 

In this study, we have proposed a deep transfer learning frame-

ork for automatic ICD-9 coding. By making use of a large number

f MeSH domain knowledge, our model can significantly improve

he performance of automatic ICD-9 coding. Experimental results

uggest that our deep transfer learning model achieves state-of-

he-art performance, outperforming hierarchy-based SVM and flat-

VM, which shows that our model is very powerful and effective.

o understand why our deep transfer learning model works well

n automatic ICD-9 coding, we have conducted a study by remov-

ng transfer learning component in our network. In particular, we

ave created a strong baseline deep learning model without trans-

er learning for comparison. Our experimental results indicate that

ransfer learning is the key component to improve the performance

f automatic ICD-9 coding and deep learning approach is the foun-

ation in the success of our proposed model. Furthermore, we

ave also compared the performance of multi-scale and sequen-

ial network architecture to explore the best network structure in
coding via deep transfer learning, Neurocomputing (2018), 
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hared layer. The experimental results showed that the better per-

ormance obtained by multi-scale CNNs. It has indicated that us-

ng multi-scale CNNs can capture text contextual features. We have

lso studied the effects of transferring different number of samples

n transfer learning. Specifically, we use 1%, 10%, 50%, 75% and

00% samples of BioASQ3 dataset to explore the effect of trans-

erring different number of samples. It turns out that transferring

00% samples of BioASQ3 dataset can achieve the best performance

hile transferring 1% samples even decrease the performance of

ur target domain task. 

Transfer learning is an effective learning technique in target

ask through the transfer of knowledge from a related task. We

onclude that transfer learning not only enhances the power of

eep learning approaches, but also breaks the obstacle of insuffi-

ient data samples for training target domain task. Therefore, we

elieve that transfer learning can be generalized to other text clas-

ification tasks. 
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