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Historic Background
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https://progressivegeographies.com/2015/07/12/jeremy-cr
ampton-on-maps-permissions-and-asterix/

https://www.ancient.eu/image/3372/
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▪ Nowadays: Greek and Latin rooted medical 
words can be found across many languages
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Pat. hat viel Durst. Appetit gut. Stuhlgang normal.
Patient is very thirsty. Good appetit. Bowel movement normal.
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▪ The same concept can be expressed in many 
different ways (Abbreviations)

▪ Distinct identification of concepts 
○ e.g. Information access

▪ Examples of ambiguous terms: 
○ cold: temperature, common cold, chronic 

obstructive lung disease, cold therapy…
○ blood pressure: Arterial Blood Pressures 

(Finding), Blood pressure (Organism 
Function), taking blood pressure (Health 
Care Activity)
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headache

Cranial Pain

Cephalalgia

pain in head

CUI
C0018681
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headache

dolor de cabeza (SPA)

Cranial Pain

Cephalalgia

Bolest hlavy (CZE)

pain in head
Cefaleias (POR)

Huvudvärk (SWE)

Dor de cabeça (POR)

CUI
C0018681
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UMLS includes 25 
languages
~ 70% English
~ 10% Spanish
~ 3% French
~ 2% German

Non-English Normalization 
against UMLS: 
Ambiguity is not the main 
problem!
Task: how to find the right 
concept
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First idea: use Google Translate or 
Bing Translator to translate unknown 
terms to increase recall
BUT:
- services not for free if you start 

extensive tests
- sending clinical data via Internet 

might be not that what you want  
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Baseline idea: learn to convert 
Latin-/Greek-rooted words 

UMLS includes 25 
languages
~ 70% English
~ 10% Spanish
~ 3% French
~ 2% German
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▪ Character-based neural translation model 
based on Lee et al., (2016)

▪ Training data: 
○ Parallel data of UMLS
○ FreeDict dictionary
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
○ Disambiguation (solving ambiguity)

UMLS
English

UMLS“mention”

lookup

lookup

Solr
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result?

no
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result?
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yes
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return
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Mono-Lingual 
Candidate Search 
(ML)

Biomedical 
Translation Model 
(BTM)

Cross-Lingual 
Candidate Search 
(CL)

Note: A good 
optimization of 
Solr can 
already help!
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
○ Disambiguation (solving ambiguity)
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
○ Disambiguation (solving ambiguity)
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
○ Disambiguation (solving ambiguity)

UMLS
English

UMLS“ratte”

lookup

lookup

Solr

Solr

result?

no

lookup
& return

result?

no

yes

yes

Translator

return

return

target
language

“rat”

C0034693
C0034721
C1705913
C2097385
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▪ Normalization often two steps:
○ Candidate Search (increase recall)
○ Disambiguation (solving ambiguity)

“anatomie” Translator

“anatomy”
“anatomim”
“anatominous”
“anatominous”
“anatominetized”
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▪ Quaero Corpus used for CLEF eHealth 2015 
Task 1b (Neveol et al., 2015) and 2016 Task 2 
(Neveol et al., 2016)
○ French Medline titles and EMEA abstracts

▪ Mantra
○ Medline titles, EMEA abstracts and EPO 

patents for GER, SPA, FRE, DUT
○ much smaller than Quaero
○ comparison to Google Translate & Bing 

Translator: manual translation by our 
students



▪ Comparison to the best system of CLEF 

Results
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Evaluation: CLEF eHealth 2015

Evaluation: CLEF eHealth 2016
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Evaluation  against  Mantra corpus
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▪ Free Neural Translation Model for 
Cross-lingual Concept Normalization

▪ Recall can be increased, but final results also 
strongly depend on disambiguation

▪ Usage in clinical context:
○ we have to deal with a special vocabulary 

(many abbreviations) which can be not 
covered by translator -> resolution first
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Thank you


