Biomedical Abbreviation Recognition and Resolution 2nd Edition (BARR2)

IberEval 2018 | SEPLN 2018

18 September 2018. Seville, Spain

- Detecting & resolving abbreviations is critical for almost any NLP task: machine translation, IR, IE, NER, text categorization, summarization, linguistic annotation,...
- Abbreviation resolution approaches are highly portable/adaptable across different languages
- Abbreviation recognition/resolution is key both across languages and domains
- For clinical & biomedical NLP resolution of abbreviation is a critical initial step
- Abbreviations the most challenging aspect for Spanish medical translators
- The BARR2 tasks requires for clinical case studies:
 - Task 1: Detect explicit occurrences of abbreviation-definition 8short form-long form) pairs
 - Task 2: Detect and resolve all abbreviations mentions returning their definition

More info, dates and registration: http://temu.bsc.es/BARR2

Mujer de 84 años sin ACM. Niega hábitos tóxicos. Parcialmente dependiente ABVD. Vive en residencia. Antecedentes de HTA, DLF y FA antiagregada. Ictus POCI ACP izquierda en 2008, etiología cardioembólica.

Mujer de 84 años sin alergias medicamentosas conocidas. Niega hábitos tóxicos. Parcialmente dependiente adriamycin bleomycin vinblastine and dacarbazin. Vive en residencia. Antecedentes de hipertensión arterial, depresión a largo plazo y fibrilación auricular antiagregada. Ictus circulación posterior, arteria cerebral posterior izquierda en 2008, etiología cardioembólica.

BARR2 Corpus example case: text and annotations

Varón de 58 años de edad en el momento del trasplante, el 5 de octubre de 1998.

En programa de diálisis peritoneal desde enero del mismo año por IRC progresiva secundaria a glomerulonefritis tipo IgA con esclerosis focal y segmentaria asociada diagnosticada en 1984.

Otros antecedentes de interés: hipertensión arterial diagnosticada en 1982, en tratamiento farmacológico, cardiopatía isquémica por enfermedad coronaria con angioplastia transluminal de la coronaria derecha en 1994 (desde entonces asintomático, pruebas de esfuerzo posteriores negativas), dislipemia tipo II. Intervenido de criptorquídia bilateral y amigdalectomizado en juventud.

El trasplante renal cursó sin incidencias (riñón izquierdo en fosa ilíaca derecha con 2 arterias en parche único y vena que se abocan a ilíacas externas), con función eficaz inmediata del injerto, sin rechazo agudo y niveles elevados de ciclosporina sin toxicidad clínica aparente. El paciente recibe tratamiento con ciclosporina 8mg/Kg, micofenolato mofetilo 2gr/día, y prednisona 1mg/Kg, disminuyendo progresivamente las cifras en controles posteriores.

En septiembre de 2000 (a los 2 años del trasplante), el paciente refiere por primera vez sensación de inestabilidad a la marcha y temblores en las manos que aumentan progresivamente iniciándose estudio por Servicio de neurología. En el momento del estudio el paciente presenta inestabilidad de la marcha, parestesias en ambas extremidades inferiores (EEII) y temblores en manos. A la exploración física no se observa déficit motor pero sí disminución de la sensibilidad vibratoria en ambas EEII, reflejos osteotendinosos (ROT) vivos y reflejo cutaneoplantar (RCP) en extensión. La resonancia magnética nuclear (RMN) no mostró lesiones a nivel cerebral o espinal, el análisis del líquido cefalorraquídeo (LCR) mostró pleocitosis linfocitaria sin bandas oligoclonales, los potenciales evocados resultaron alterados a nivel tibial y fueron los test serológicos, ELISA, y la reacción en cadena de la polimerasa (PCR) los que fueron positivos para HTLV-I en LCR y sangre en el primer caso y en sangre la PCR. Se demostró una alta carga viral.

El paciente fue diagnosticado de paraparesia espástica tropical (TSP), y a pesar de repetidos pulses de 6-Metil-Prednisolona, evoluciona de forma progresiva. Ha rechazado tratamiento con Interferón por la posibilidad de rechazo del trasplante. Desde punto vista de la función renal, en todo momento se ha mantenido correcta con niveles de creatinina oscilantes entre 1-12.

	ch tout	it todo infoliento se na mantendo correcta con inveles de creatinina oscitantes entre 1-12.						
		<pre># Document_ID StartOffset</pre>	EndOff	set	Abbrev.	lation Definition Definition_lemmatized		
	Ha sid	S0004-06142005001000011-1	1034	1036	Kg	kilogramo kilogramo		
	media	S0004-06142005001000011-1	1031	1033	mg	miligramo miligramo		
	CISIOIII	50004-06142005001000011-1	196	199	IgA	inmunoglobulina a inmunoglobulina a		
	En este	50004-06142005001000011-1	2057	2060	LCR	líquido cefalorraquídeo líquido cefalorraquídeo		
	ruedas	50004-06142005001000011-1	1594	1598	EEII	extremidades inferiores extremidad inferior		
		50004-06142005001000011-1	1009	1011	gr	gramo gramo		
		50004-06142005001000011-1	982	984	Kg	kilogramo kilogramo		
		50004-06142005001000011-1	979	981	mg	miligramo miligramo		
		50004-06142005001000011-1	1963	1968	ELISA	enzyme-linked immunosorbent assay enzyme-l		
		50004-06142005001000011-1	2207	2210	TSP	tropical spastic paraparesis tropical spastic		
		50004-06142005001000011-1	2012	2015	PCR	reacción en cadena de la polimerasa reacción		
		50004-06142005001000011-1	1808	1811	LCR	líquido cefalorraquideo líquido cefalorraquideo		
		50004-06142005001000011-1	1663	1666	RCP	reflejo cutaneoplantar reflejo cutaneoplantar		
		50004-06142005001000011-1	1626	1620	DOT	refleios ostentendinosos refleio ostenten		

Abbreviation mention types

SHORT FORM

Abbreviation mentioned in a sentence with its long form

LONG FORM

Full or long from (LF), abbreviation definition, acronym meaning

DERIVED

Abbreviation corresponding to a derived from of a SF

BARR TYPES

NESTED

Non-continuos, nested long form mention

GLOBAL

Abbreviation background knowledge (no LF)

CONTEXTUAL

Abbreviation/long from mention not co-occurring within a sentence

MULTIPLE

SF not corresponding to the actual SF mention pair (not in the same sentence)

UNCLEAR

Unclear case: looks like an abbreviation but not possible to diambiguate

Biomedical Abbreviation Recognition and Resolution 2nd Edition (BARR2)

IberEval 2018 | SEPLN 2018

18 September 2018. Seville, Spain

Tentative dates 20th April 2018	Release of sample data (sub-track 1 and sub-track 2)
16th May 2018	Training corpus available (sub-track 1 and sub-track 2)
23rd May 2018	Development corpus available (sub- track 1 and sub-track 2)
25th May 2018	Test corpus available (sub-track 1 and sub-track 2)
7th May 2018	Submission of the results (sub-track 1 and sub-track 2)
10th May 2018	Publication of results (sub-track 1 and sub-track 2)
11th June 2018	Working notes submission
1st July 2018	Release of the working notes reviews
15th July 2018	Camera ready paper submission
18 September 2018	IberEval 2018 Workshop

More info, dates and registration: http://temu.bsc.es/BARR2

IBEREval 2017: barr track

IBEREVAL'17

TASKS

SCHEDULE

Evaluation of Human Language Technologies

for Iberian languages

Tasks

We are pleased to announce the following tasks in IberEval 2017:

- Biomedical Abbreviation Recognition and Resolution
- Classification Of Spanish Election Tweets (COSET)
- Collective Elaboration of a Coreference Annotated Corpus for Portuguese Texts
- Multilingual Web Person Name Disambiguation (M-WePNaD)
- Stance and Gender detection in tweets on Catalan Independence

The Biomedical Abbreviation Recognition and Resolution (BARR) track: benchmarking, evaluation and importance of abbreviation recognition systems applied to Spanish biomedical abstracts

Ander Intxaurrondo¹, Martin Pérez-Pérez², Gael Pérez-Rodríguez², Jose Antonio López-Martín³, Jesus Santamaría¹, Santiago de la Peña¹, Marta Villegas^{1,4}, Saber Ahmad Akhondi⁵, Alfonso Valencia⁴, Analia Loureno², Martin Krallinger^{1*}

¹Centro Nacional de Investigaciones Oncológicas (CNIO),

²ESEI - Department of Computer Science, University of Vigo,

³Hospital 12 de Octubre - Madrid,

⁴Barcelona Supercomputing Center (BSC),

⁵Elsevier Content & Innovation

Abstract. Healthcare professionals are generating a substantial volume of clinical data in narrative form. As healthcare providers are confronted with serious time constraints, they frequently use telegraphic phrases, domain-specific abbreviations and shorthand notes. Efficient clinical text processing tools need to cope with the recognition and resolution of abbreviations, a task that has been extensively studied for English documents. Despite the outstanding number of clinical documents written worldwide in Spanish, only a marginal amount of studies has been published on this subject. In clinical texts, as opposed to the medical literature, abbreviations are generally used without their definitions or expanded forms. The aim of the first Biomedical Abbreviation Recognition and Resolution (BARR) track, posed at the IberEval 2017 evaluation campaign, was to assess and promote the development of systems for generating a sense inventory of medical abbreviations. The BARR track required the detection of mentions of abbreviations or short forms and their corresponding long forms or definitions from Spanish medical abstracts. For this track, the organizers provided the BARR medical document collection, the BARR corpus of manually annotated abstracts labeled by domain experts and the BARR-Markyt evaluation platform. A total of 7 teams submitted 25 runs for the two BARR subtasks; (a) the identification of mentions of abbreviations and their definitions and (b) the correct detection of short formlong form pairs. Here we describe the BARR track setting, the obtained results and the methodologies used by participating systems. The BARR task summary, corpus, resources and evaluation tool for testing systems beyond this campaign are available at: http://temu.inab.org

1 Introduction

There is an increasing adoption of Electronic health records (EHRs) in the European Union, promoted both by national plans as well as European initiatives like the 2 billion Euro publicprivate partnership Innovative Medicines Initiative [18]. Electronic

drid .